Growth of the Weil-petersson Inradius of Moduli Space

نویسنده

  • YUNHUI WU
چکیده

In this paper we study the systole function along WeilPetersson geodesics. We show that the square root of the systole function is uniform Lipschitz on the Teichmüller space endowed with the Weil-Petersson metric. The inradius of a metric space is the largest radius of metric balls contained in the interior of the metric space. As applications of the result above, we study the growth of the Weil-Petersson inradius of the moduli space of Riemann surfaces of genus g with n punctures as a function of g and n. We show that the Weil-Petersson inradius is comparable to 1 in n, and is comparable to √ ln g in g. Moreover, we also study the asymptotic behavior, as g goes to infinity, of the Weil-Petersson volumes of geodesic balls of finite radii in the Teichmüller space. We show that they behavior like o(( 1 g )(3− ) as g → ∞, where is an arbitrary positive number.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Weil-petersson Volume and the First Chern Class of the Moduli Space of Calabi-yau Manifolds

In this paper, we continue our study of the Weil-Petersson geometry as in the previous paper [10], in which we have proved the boundedness of the Weil-Petersson volume, among the other results. The main results of this paper are that the volume and the integrations of Ricci curvature of the Weil-Petersson metric on the moduli space are rational numbers. In particular, the Ricci curvature define...

متن کامل

O ct 2 00 5 ON THE WEIL - PETERSSON VOLUME AND THE FIRST CHERN CLASS OF THE MODULI SPACE OF CALABI - YAU MANIFOLDS

In this paper, we continue our study of the Weil-Petersson geometry as in the previous paper [10], in which we have proved the boundedness of the Weil-Petersson volume, among the other results. The main results of this paper are that the volume and the integrations of Ricci curvature of the Weil-Petersson metric on the moduli space are rational numbers. In particular, the Ricci curvature define...

متن کامل

On the Weil-petersson Curvature of the Moduli Space of Riemann Surfaces of Large Genus

Let Sg be a closed surface of genus g and Mg be the moduli space of Sg endowed with the Weil-Petersson metric. In this paper we investigate the Weil-Petersson curvatures of Mg for large genus g. First, we study the asymptotic behavior of the extremal Weil-Petersson holomorphic sectional curvatures at certain thick surfaces in Mg as g → ∞. Then we prove two curvature properties on the whole spac...

متن کامل

Geometry of Moduli Spaces of Higgs Bundles

We construct a Petersson-Weil type Kähler form on the moduli spaces of Higgs bundles over a compact Kähler manifold. A fiber integral formula for this form is proved, from which it follows that the Petersson-Weil form is the curvature of a certain determinant line bundle, equipped with a Quillen metric, on the moduli space of Higgs bundles over a projective manifold. The curvature of the Peters...

متن کامل

The Weil-petersson Geometry on the Thick Part of the Moduli Space of Riemann Surfaces

In the thick part of the moduli space of Riemann surface, we show the sectional curvature of the Weil-Petersson metric is bounded independent of the genus of the surface.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016